233,евклид
Содержание:
- Четырехугольники
- Средневековье и Возрождение
- Архитектура и геометрия
- Примечания и ссылки
- Геометрию изобрели в Древнем Вавилоне
- Достижения Евклида
- Практическая сторона геометрии
- Свойства треугольников
- Необычные свойства
- Краткая биография
- Комбинации простейших объектов
- Евклид
- Классификация треугольников по их сторонам
Четырехугольники
Про четырехугольники мы много говорим на уроках в школе: прямоугольник, квадрат, ромб.
Но говорим о них не в общем случае, как для треугольников (такие вещи, как теорема синусов, косинусов), а можем формулировать только какие-то свойства для определенных видов четырехугольников.
Четырехугольникам лучше уделить побольше времени — у каждого из них есть особые свойства, которые не пригодятся для других фигур. Поэтому каждый четырехугольник лучше внимательно изучить на уроке или почитать в наших материалах:
- площадь фигуры
- периметр фигуры
- площадь прямоугольника
- периметр прямоугольника
- площадь квадрата
- периметр квадрата
- параллелограмм
- прямоугольный параллелепипед.
Средневековье и Возрождение
Сохранение древних произведений и латинские переводы греческих или арабских произведений являются основным вкладом западного средневековья в геометрию.
В целом средневековье в Западной Европе для геометрии, как и для многих других наук, было периодом упадка.
Геометрию, конечно, все еще преподают. Это часть квадривиума, который также включает арифметику , астрономию и музыку . Однако квадривиум гораздо менее популярен, чем тривиум ( грамматика , риторика и диалектика ): последний, вероятно, лучше подходит для общества, основным проектом которого является подготовка к пост-земной жизни.
В течение длительного периода , который тянется примерно с V — го века XV — го века ученые геодезистов редкость на Западе. Мы можем упомянуть Гербера д’Орийака, который стал папой под именем Сильвестра II, и особенно Леонардо Пизанского, известного как Фибоначчи; они по-прежнему более известны своей арифметической работой и страстью, с которой они переводили работы арабских ученых …
Возрождение к XV — го века и XVI — го века увидел первый тремор геометрической новости с появлением конической точки зрения которого теория подвергается нападению ряда ученых, в основном итальянцы, и самый известный, вероятно , Piero Франческа , Леонардо да Винчи , и Лука Пачоли , первые двое были обязаны своей славой больше своему художественному гению, чем математике.
Архитектура и геометрия
Геометрические принципы внедрены во все проекты архитектурных сооружений. Неоспорима решающая роль геометрии при строительстве любых зданий.
Строительное проектирование всегда производится с учетом пространственных форм, влияющих на зрительное восприятие и относящихся к важнейшим характеристикам любого здания.
Геометрический вид, являющийся важным свойством сооружения и определяемый трехмерными размерами (ширина, глубина, высота), зависим от их соотношения. При равных размерах – форма архитектурного сооружения выглядит объемной, при одном из размеров значительно меньшем, чем два остальных – сооружение выглядит плоским, а в случае, когда два размера намного менее одного, сооружение приобретает линейный вид.
Архитектурные свойства определяются протяженностью по трем координатным осям и характеризуются размерами по высоте, ширине и глубине относительно размеров человека или смежных строений.
Примечания и ссылки
Заметки
- Открытие таблички Плимптон 322 показывает, что теорема Пифагора, вероятно, была известна вавилонской цивилизации за 1000 лет до Пифагора.
- Эта формула апокрифическая: ἀγεωμέτρητος μηδεὶς εἰσίτω — ageômetrètos mèdeis eisitô .
- Две величины неизмеримы, если их соотношение не равно дроби. Также говорят, что это иррациональное число .
- Геометрия не единственная дисциплина , чтобы увидеть ее развитие взрывается XVII — го века. Мы увидим , об этой статье Математика в Европе в XVII — м веке .
- В том смысле, что нет причин приписывать неевклидовой геометрии онтологический статус, отличный от статуса евклидовой геометрии.
Рекомендации
- « da ich das der Geschrei Böotier scheue » письмо Гаусса к Бесселю от 27 июня 1829 г., цитируемое в (de) H. Reichardt , Gauß und die nicht der Anfänge-euklidischen Geometry , Springer-Verlag ,2013, 250 с. , стр. 40.
Геометрию изобрели в Древнем Вавилоне
Многие поколения людей последних нескольких сотен лет твердо убеждены, что геометрию изобрели в Древней Греции, а имя Евклида тесно связано с этой наукой. Евклид родоначальник геометрии?
Но если внимательно изучать древнюю историю, то мы можем обратить внимание, что элементарную геометрию неплохо знали и использовали древние Египтяне: им нужно было уметь правильно делить земные участки на плодородных участках в дельте Нила, так же им нужно было строить пирамиды и здания. Однако в последнее время появились новые факты, в которых небезосновательно доказывается, что геометрия зародилась в Вавилоне
Почему в Вавилоне и почему так давно — в 35–50 годах до н.э. ?
Однако в последнее время появились новые факты, в которых небезосновательно доказывается, что геометрия зародилась в Вавилоне. Почему в Вавилоне и почему так давно — в 35–50 годах до н.э. ?
Науке давно известно, что вавилоняне обладали серьезными лля их времени достижениями в астрономии: древнее население Южной Месопотамии могло предсказывать затмения, вычислять расстояния между звездами и планетами, собирать точные данные о видимых невооруженным глазом небесных телах. Они для определения положения Юпитера на небосводе, которому поклонялись как самому главному (верховному) божеству, называя его Мардуком, вавилоняне проводили сложные геометрические вычисления, которые, как считалось ранее, появились лишь в XIV веке в Европе. Вавилоняне обогнали свое время, а с ними достижения в геометрических знаниях древних египтян и греков!
Проблемой развития науки, в частности астрономии и геометрии в Месопотамии, в течении долгих 14 лет занимался пециалист в археоастрономии Мэтью Оссендриджвер (Mathieu Ossendrijver) из Берлинского университета имени Гумбольдта. Каждый год в течение этого времени он ездил в Британский музей, где изучал глиняные таблички древних вавилонян (как известно, вавилоняне писали на глиняных табличках клинописными значками), где все таки разгадал загадку, которую хранили две таблички. На этих глиняных «скрижалях», как выяснилось в результате их расшифровки, были изложены инструкции для построения трапециевидной фигуры!
«Глиняные таблички показали, что вавилоняне могли вычислять движение планет в очень современном стиле — они рассчитывали зависимость скорости от времени, как это делается в современных графиках», — рассказал корреспонденту отдела науки «Газеты.Ru» автор исследования. — «Любой современный математик или физик скажет вам, что с помощью таких измерений вы сможете вычислить расстояние, которое прошло тело. Раньше считалось, что это поняли в 1350 году в Оксфорде и в Париже, но на самом деле это сделали вавилоняне в 35–50 годах до н.э. Кроме того, на табличках использованы геометрические вычисления, которые появились еще раньше — в 1800–1600 годах до н.э. Так «старая геометрия» была применена к новой ситуации».
Ученый так же отметил, что вавилонская геометрия была особенной и она отличалась своими от геометрии древних греков более абстрактными и глубокими представлениями о геометрических объектах. Такими достижениями в области абстрагирования геометры Европы смогли похвастаться только на рубеже XIV нашей эры.
Сейчас становится понятным, что все астрономические вычисления вавилонян были преданы забвению, а европейские ученые лишь в конце Средних веков повторно изобрели то, что разработало древнее население Южной Месопотамии. По мнению автора исследования, полученные им результаты могут свидетельствовать о том, что если бы вавилонская геометрия была перенята другими народами, то в Средние века математикам не пришлось изобретать колесо. Увы, история не признает сослагательные наклонения…
Достижения Евклида
Достижения Евклида имели огромное значение для мировой истории, математики и других наук.
Он был первым, кто:
- систематизировал известные труды предшественников в единый сборник из 13 книг;
- создал 5 постулатов НОД и 5 аксиом в области геометрии;
- охарактеризовал все известные геометрические фигуры, дал понятие кривым линиям, коническим сечениям и другим явлениям;
- создал трактат по ошибкам при изучении и создании геометрических доказательств;
- доказал практическое использовании математики при изучении звезд, небесных тел, космоса и других наук;
- изучил свет с законами его распространения;
- изучил зеркала и способности преломления в них световых лучей;
- создал простейшую теорию в области музыки;
- создал постулаты и формулы по механики и определил удельный вес тел.
Математика
Евклид — отец математики. Он сформулировал теоремы по планиметрии, упростил понимание теоремы Пифагора и теоремы о сумме углов треугольника, прописал свойства правильных многоугольников и законы построения правильных пятнадцатиугольников, указал, как применима алгебры в жизни и каковы ее основные теории, вписал теорию о целом и рациональном числе, рассмотрел квадратичную иррациональность, заложил основы стереометрической науки, доказал теоремы, касающиеся площади круга с объемом шара, вывел отношение объема пирамид с конусами, призмами и цилиндрами.
Другие науки
Помимо математики, ученый работал с оптикой, астрономией, логикой и музыкой. Так, в оптике он дал сведения об оптической перспективе, зеркальных искажениях и отражениях световых лучей в зеркале.
Практическая сторона геометрии
Название «геометрия» переводится с греческого, как «гео» — земля и «метрео» — мерить. Изначально геометрию использовали для разметки земли и других работ с землей. Но, оказалось, что сфера ее влияния безгранична.
Чтобы понять, зачем нам нужны знания по геометрии, просто оглянитесь вокруг: геометрия окружает нас в предметах разных форм. Взять хотя бы круг: его используют в искусстве, строительстве, технике. То же самое и с другими фигурами: чтобы сконструировать автомобиль или айфон, сшить одежду или построить дом — не обойтись без геометрии.
А еще геометрия помогает научиться рассуждать логически, искать связи и противоречия — полезный навык в диджитал-мире, когда информация окружает нас повсюду.
Вот, в каких профессиях пригодится геометрия: архитектор, айтишник, дизайнер, инженер, конструктор, строитель, smm-менеджер, декоратор, летчик, водитель, художник, проектировщик, астроном, спортсмен, музыкант и другие.
Почему изучать геометрию просто: мы видим объемный мир каждый день и регулярно прикасаемся к предметам, строим планы, размышляем и считаем в уме. В геометрии все знания подкреплены научными теориями — это помогает взаимодействовать с пространством по-другому, более осознанно.
Почему изучать геометрию сложно: некоторые правила придется учить наизусть.
Чтобы понять геометрию, двигайтесь от простого к сложному. Многие теоремы могут показаться очевидными. Но эта видимость может быть верной только для одного рисунка. Невозможно нарисовать все ситуации, ведь их их бесконечное множество
Именно поэтому важно доказать истину, чтобы никогда не сомневаться в ней
Свойства треугольников
Раз треугольник можно задать тремя элементами, значит их можно классифицировать. Если два треугольника похожи, значит у них есть общие свойства.
Треугольник можно составить совсем не из любых трех отрезков: они должны удовлетворять важному свойству — неравенству треугольника. Кратчайшее расстояние между двумя точками — это длина отрезка, который их соединяет
Из этого следует, что любой другой путь между двумя точками будет длиннее, чем этот отрезок
Кратчайшее расстояние между двумя точками — это длина отрезка, который их соединяет. Из этого следует, что любой другой путь между двумя точками будет длиннее, чем этот отрезок.
Неравенство треугольника Сумма любых двух сторон треугольника больше его третьей стороны. |
Еще одно свойство верное для всех треугольников: сумма всех углов треугольника составляет половину полного оборота. Или по-другому: сумма углов треугольника — два прямых угла.
Мы знаем, что две геометрические фигуры считают равными, если их можно совместить наложением. Это справедливо и для треугольников. Равные фигуры имеют равные размеры и формы. Значит, если два треугольника равны — элементы одного треугольника соответственно равны элементам другого треугольника.
Равенство треугольников ABC и A1B1C1 обозначается так: ΔABC = ΔA1B1C1.
Есть даже специальные теоремы про равенство треугольников.
Первый признак равенства треугольников звучит так:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
ΔABC = ΔA1B1C1, так как AC = A1C1, AB = A1B1 и ∠A = ∠A1 (∠A лежит между сторонами AC и AB, а ∠A1 между A1C1 и A1B1).
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
ΔABC = ΔA1B1C1, так как AB = A1B1, ∠A = ∠A1, ∠B = ∠B1.
Третий признак равенства треугольников
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
ΔABC = ΔA1B1C1, так как AC = A1C1, AB = A1B1 и BC = B1C1.
Из теоремы следует, что треугольник — жесткая фигура, то есть фигура, которую невозможно деформировать.
Необычные свойства
Четырехугольник Ламберта в гиперболической геометрии
Четырехугольники Саккери в трех геометриях
Евклидова и неевклидова геометрии, естественно, обладают многими схожими свойствами, а именно теми, которые не зависят от природы параллелизма. Эта общность является предметом абсолютной геометрии (также называемой нейтральной геометрией )
Однако исторически наибольшее внимание уделялось свойствам, которые отличают одну геометрию от других.
Помимо поведения линий относительно общего перпендикуляра, упомянутого во введении, мы также имеем следующее:
- Ламберт четырехугольник является четырехугольник с тремя прямыми углами. Четвертый угол четырехугольника Ламберта острый, если геометрия гиперболическая, прямой угол, если геометрия евклидова, или тупой, если геометрия эллиптическая. Следовательно, прямоугольники существуют (утверждение, эквивалентное постулату параллельности) только в евклидовой геометрии.
- Саккрайте четырехугольник является четырехугольник с двух сторон равной длиной, и перпендикулярно к стороне называется база . Два других угла четырехугольника Саккери называются верхними углами, и они имеют одинаковую меру. Вершины четырехугольника Саккери острые, если геометрия гиперболическая, прямые углы, если геометрия евклидова, и тупые углы, если геометрия эллиптическая.
- Сумма углов любого треугольника меньше 180 °, если геометрия гиперболическая, равна 180 °, если геометрия евклидова, и больше 180 °, если геометрия эллиптическая. Дефект треугольника это числовое значение (180 ° — сумма мер углов треугольника). Этот результат можно также сформулировать так: дефект треугольников в гиперболической геометрии положительный, дефект треугольников в евклидовой геометрии равен нулю, а дефект треугольников в эллиптической геометрии отрицателен.
Краткая биография
Биография Евклида до конца не изучена, к примеру, до сих пор неизвестен год рождения. Известно, что он появился на свет в небольшом районе Афин и был платоновским учеником.
Подъем его научной работы пришелся на правление Птолемея Первого. Некоторые сведения о его жизни можно проследить по арабским рукописям и архимедовым письмам к друзьям. Так, по ним можно определить, что Евклид был сыном греческого ученого и жил около Тира в Сирии.
С малых лет получал знания о мире от своего отца, он же привил сыну любовь к естественным наукам, а затем Евклид поступил в школу Платона, где и обучился математическим основам.
Повзрослев, его пригласили в храм Мусейон (по другим данным он был одним из его основателей), в котором собирались видные ученые с поэтами. Тут были классы для занятий. Также храм был заполнен садами с башнями астрономии, помещениями для одиноких размышлений и большой библиотекой.
В Мусейоне он смог открыть школу с лучшими математиками и монументальный труд в области математики, в котором заложил планиметрические основы со стереометрией, теорией чисел, законами алгебры, методами нахождения площадей с объемами и др.
Фрагмент папируса с текстом «Начал» Евклида
Монументальный труд — публикация «Начала». Это серия из 13 книг, представляющая собой обработанные публикации древнегреческих математиков с пятого по четвертый век до нашей эры.
Кроме «Начал», было создано еще одно сочинение — «Данные», в котором были опубликованы основы по геометрическому анализу. Кроме того, александрийский ученый создал учебник, с помощью которого в то время и сейчас изучают астрономию, перспективу, отражение в зеркале, музыкальные интервалы и решают тригонометрические задачи.
Все оставшиеся годы жизни посвятил изучению естественных наук и математических законов, отчего его называют отцом геометрии. О других аспектах его жизни неизвестно до сих пор. Умер в Александрии.
Это интересно: 231,ДУХОВНАЯ КУЛЬТУРА — разбираемся внимательно
Комбинации простейших объектов
Поговорим про комбинации простейших объектов. Например, две прямые, которые мы уже разглядели — либо пересекаются на плоскости, либо нет (тогда они параллельны).
Когда прямые пересекаются, можно ввести понятие отношения между двумя прямыми. Аналогично мы поступали с числами: ввели натуральные числа — количество предметов в множестве. А после этого изучали отношения между этими числами: дроби, возведение в степень.
Точно так же мы изучали множества, а после — отношения между множествами, функции.
Две прямые образуют углы. По сути, угол — это отношение между прямыми. Если один из них нулевой, то прямые параллельны. Если нет — прямые пересекаются.
Максимальный угол – это полный оборот, он составляет 360 градусов.
Угол — это часть плоскости, ограниченная двумя лучами, которые выходят из одной точки. Углы измеряются в градусах. Углов бесконечно много, так как от 0° до 360° угол может принимать бесконечное множество значений.
Есть разные виды углов, выделим самые часто встречающиеся:
- Если градусная мера угла меньше 90° — угол острый.
- Если градусная мера угла равна 90° — угол прямой.
- Если градусная мера угла больше 90°, но меньше 180° — угол тупой.
- Если градусная мера угла равна 180° — угол развернутый.
Точка называется вершиной угла, а лучи — сторонами угла.
Два угла называются вертикальными, если их стороны являются дополнительными лучами. Свойство вертикальных углов звучит так: вертикальные углы равны.
Два угла называются смежными, если одна сторона у них общая, а две другие являются дополнительными лучами. Свойство смежных углов: сумма смежных углов равна 180°.
Биссектриса угла — это луч с началом в вершине угла, который делит угол на две равные части.
А теперь посмотрим на взаимное расположение трех прямых.
Первый случай: все три прямые параллельны.
Второй случай: две прямые параллельны, а третья их пересекает.
Третий случай: если провести три прямые на плоскости случайным образом, велика вероятность образования треугольника. Поэтому этой фигуре мы уделяем так много времени в школе на уроках геометрии.
Евклид
К IVIII векам до нашей эры геометрия вполне оформилась как наука. Были устоявшиеся традиции, детально разработанные методы решения задач, крупные достижения, было уже несколько учебников и различные научные школы.
Рассказать обо всех геометрах доевклидового периода а список математиков того времени включает несколько десятков славных имён и об их работах, естественно, невозможно. И поскольку у нас не многотомный исторический труд, а небольшая статья, оставим предтеч и перейдём непосредственно к Евклиду.
Жил и работал он во время весьма любопытное.
В 323 году до нашей эры то ли вследствие острой лихорадки, то ли в результате неумеренного пьянства или просто от доброй порции яда отправился на свидание к отцу своему Зевсу царь царей земных, изрядно уже потрёпанный жизнью, хотя сравнительно молодой, тридцатитрёхлетний мужчина Александр Македонский.
Полубога подобающим образом проводили и перешли к текущим делам. А дел хватало: надо было делить империю. Размеры её были невероятны. Всего лишь за десять лет оказались завоёванными страны, в сотни раз превосходившие маленькую полунищую Македонию.
Границы известного мира расширились во много раз, и теперь предстояло переварить проглоченное. Было ясно, что для одного такое наследство непомерно, и отдавать всё малолетнему брату Александра или же второму наследнику сыну, появившемуся на свет через несколько месяцев после смерти отца, было просто смешно. Посему империю полюбовно растащили те полководцы, которых Александр не успел казнить. Они поклялись в вечной дружбе, заключили вечный мир, порядком выпили на радостях, обменялись суровыми мужскими пожатиями на прощанье и, естественно, началась междоусобная резня.
Более других в этой сваре повезло осмотрительному Птолемею, который при делёжке отхватил себе Египет. Наследники его постепенно ассимилировались, а династия оказалась не только самой прочной и долговечной, но и прославилась тем, что дала истории Клеопатру.
И самый первый Птолемей, и все последующие Птолемеи славны тем, что были покровителями наук. Какие у них на то были мотивы, трудно сейчас разобраться, но факты таковы: в IIIII веках до нашей эры Александрия превратилась в основной научный центр эллинистического мира. И наиглавнейшим научным институтом был знаменитый Александрийский музей с Александрийской библиотекой. Сюда-то и пригласил Птолемей Евклида, и именно здесь Евклид написал «Начала» книгу, в истории человечества бесспорно уникальную.
Снова я должен сделать традиционное уже признание: о самом Евклиде практически ничего не известно.
Легенды, конечно же, имеются. Рассказывают, например, что Птолемей поначалу сам захотел одолеть премудрости геометрии, но довольно скоро обнаружил, что изучение математики требует некоторых усилий. Тогда он призвал Евклида и вопросил его, полагаю, как джентльмен джентльмена, нельзя ли постигнуть все тайны науки как-нибудь попроще? На что Евклид ответил: «В геометрии нет царского пути». Остаётся неведомым, продолжал ли после этого царь занятия математикой (вероятнее всего, он утешился в занятиях, более приличествующих царям, таких, как приёмы, охота, пиры, услады гарема, наконец).
Рассказывают также, что однажды к Евклиду явился изучать геометрию некий молодой прагматик. Первый вопрос, который он задал будущему учителю, был следующий: какая практическая польза будет от штудирования «Начал»? Тогда Евклид, весьма и весьма задетый, призвал раба и сказал: «Дай ему обол (грош), он ищет выгоды, а не знаний».
Надо, впрочем, сознаться, что обе истории столь традиционны, учитывая представление древних греков о мудрецах и о математике, что особо доверять им не приходится. «Точные» же биографические данные основываются на заметках неизвестного арабского математика XII века: «Евклид, сын Наукрата, сына Зенарха, известный под именем Геометра, учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира…»
Всё.
Человек бесследно растворился в веках. Осталась его работа.
Классификация треугольников по их сторонам
Для классификации треугольников можно использовать их типологию.
Один из распространенных типов — прямоугольный треугольник. Если один из углов прямой, то это накладывает определенные свойства на треугольник. Прямоугольный треугольник — это также половина прямоугольника.
Свойства прямоугольного треугольника
- Теорема Пифагора сумма длин квадратов катетов равна квадрату гипотенузы
- Свойство медианы: медиана, проведенная из вершины с прямым углом, равняется половине гипотенузы.
С прямоугольных треугольников начинается изучение тригонометрии. Можно измерять углы с помощью отношений, использовать понятия синуса, косинуса. Помним, что угол можно задать двумя числами, их отношением.
Если две стороны треугольника равны, то это равнобедренный треугольник — и тогда у него есть ось симметрии. Если нарисовать такой треугольник и сложить лист пополам, то две части треугольника совпадут. Эта особенность дает треугольнику определенные свойства.
Симметричный треугольник, у которого все углы и стороны равны — это равносторонний треугольник. У таких треугольников три оси симметрии. Это значит, что если мы повернем треугольник на 60 градусов, то получим точно такой же треугольник.
Такой треугольник задается одним параметром — длиной стороны. Она полностью определяет все другие значения и размеры в этом треугольнике.
От правильного треугольника может плавно перейти к правильным многоугольникам. У треугольника 3 угла, у четырехугольника — 4, а у пятиугольника — 5 углов. У многоугольника много углов